
Transaction Management
• Atomicity

Either all or none of the transaction’s operations are performed.
Atomicity requires that if a transaction is interrupted by a
failure, its partial results are undone.

Reasons for transaction not completed: Transaction aborts or system
crashes.

Commitment: completion of a transaction

Transaction primitives: BEGIN, COMMIT, ABORT

• Global of transaction management: Efficient, reliable, and concurrent
execution of transactions

• Agents: A local process which performs some actions on behalf of an
application

• Root Agent:

-Issuing begin transaction, commit, and abort primitives

-Create mew agent

Failure Recovery

Basic Techniques: LOG

A log contains information for undoing or redoing all actions which are
performed by transactions.

Undo:Reconstruct the database as prior to its execution (e.g.. abort)

Redo:Perform again its action (e.g.. failure of volatile storage before
writing on to stable storage, but already committed)

Undo and redo must be independent. Performing them several times
should be equivalent to performing them once.

A log contains:

1. Transaction ID

2. Record ID

3. Type of action (insert, delete, modify)

4. The old record value (required for undo)

5. The new record value (required for redo)

Failure Recovery (cont’d)

A log contains:

6. Information for recovery (e.g.. a pointer to the previous
log record of the same transaction).

7. Transaction status (begin, abort, commit)

Log Write-ahead protocol

– Before performing a database update, log record
recorded on stable storage

– Before committing a transaction, all log records of the
transaction must have recorded on stable storage.

Recovery Procedure Via Check Points

Check points are operations which are periodically
performed (e.g. few minutes) which write the following to
stable storage.

• All log records and all database updates which are still in
volatile storage.

• Check point record which contains the indication of
transactions which are active at the time when check point
is done.

Local Transaction Manager (LTM)

Provides transaction management at local site, for
example, local begin, local commit, local abort, perform
subtransaction (local transaction).

Distributed Transaction Manager (DTM)

Provides global transaction management.

LTM has the capabilities

• Ensuring the atomicity of a subtransaction.

• Write record on stable storage on behave of DTM.

Atomicity at LTM is not sufficient for atomicity at DTM (i.e.
single site vs. all sites).

Two Phase Commit Protocol

• Coordinator: Making the final commit or abort
decision (e.g.. DTM).

• Participants: Responsible for local
subtransactions (e.g. LTM).

• Basic Idea: Unique decisions for all participants
with respect to committing or aborting all the local
subtransactions.

• 1st Phase: To reach a common decision

• 2nd Phase: Global commit, or global abort,
(recording the decision on the stable storage.)

Phase 1

• The coordinator asks all the participants to prepare for
commitment.

• Each participant answers READY if it is ready to commit
and willing to do so. Each participant record on the stable
storage.

1) all information which is required for locally
 committing the subtransactions.

2) “ready” log record must be recorded on the stable
 storage

• The coordinator records a “prepare” log on the stable
storage which contains all the participants’ identification,
and also activates a time out mechanism.

Phase 2

• The coordinator recording on the stable storage of its
decision “global commit” or “global abort”

• The coordinator informs all the participants of its decision

• All participants write a commit or abort record on the log
(assure local subtransaction will not be lost).

• All participants send a final acknowledgment message to
the coordinator and perform the actions required for
committing or aborting the subtransaction.

• Coordinator writes a “complete” record on the stable
storage.

Coordinator: Write a “prepare” record in the log:

 Send PREPARE message and activate time-
out

Participant: Wait for PREPARE message:

 If the participant is willing to commit then
 begin

 Write subtransaction’s records in the log;

 Write “ready” record in the log;

 Send READY answer message to

 coordinator

end

 else begin

 Write “abort” record in the log;

 Send ABORT answer message to

 coordinator

Coordinator: Wait for ANSWER message (READY or
ABORT) from all participants or time-out;

If time-out expired or some answer message is

ABORT then

 begin

Write “global_abort” record the log;

Send ABORT command message to all

participants

 end

Participant: Wait for command message;

 Write “abort” or “commit” record in the log:

 Send the ACK message to coordinator;

 Execute command

Coordinator: Wait for ACK message form all participants:

Write “complete” record in the log

Basic 2-phase-commitment protocol.

Elimination of the PREPARE Message
2P Commit

Coordinator:

Write prepare record in the log;

Request operations for participants, and activate
time-out;

Wait for completion of participants (READY
message) or time-out expired:

Write global_commit or global_abort record in the
log;

Send command message to all participants.

Participant:

Receive request for operation:

Perform local processing and write log records:

Elimination of the PREPARE Message
2P Commit (Cont’d)

Participant:

Send READY message and write ready record in the
log:

Wait for command message:

Write commit or abort records in the log;

Execute command.

THE CONSISTENCY PROBLEM IN
A DISTRIBUTED DATABASE SYSTEM

• MULTIPLE COPIES OF THE SAME DATA AT
DIFFERENT SITES IMPROVE

• AVAILABILITY

• BETTER RESPONSE TIME

• EVERY UPDATE WILL RESULT IN A LOCAL
EXECUTION AND A SEQUENCE OF UPDATES
SENT TO THE VARIOUS SITES WHERE THERE IS A
COPY OF THE DATABASE

CONCURRENCY CONTROL

• PURPOSE: TO GIVE EACH USER THE ILLUSION
THAT HE IS EXECUTING ALONE ON A DEDICATED
SYSTEM WHEN, IN FACT, MANY USERS ARE
EXECUTING SIMULTANEOUSLY ON A SHARED
SYSTEM.

• GOALS: MUTUAL CONSISTENCY

 INTERNAL CONSISTENCY

• PROBLEMS: DATA STORED AT MULTIPLE SITES

 COMMUNICATION DELAYS

CONCURRENCY CONTROL IS A COMPONENT OF A
DISTRIBUTED DATABASE MANAGEMENT
SYSTEM

CRITERIA FOR CONSISTENCY

• MUTUAL CONSISTENCY AMONG THE
REDUNDANT COPIES

• INTERNAL CONSISTENCY OF EACH COPY

• ANY ALTERATIONS OF A DATA ITEM MUST BE
PERFORMED IN ALL THE COPIES

• TWO ALTERATIONS TO A DATA ITEM MUST BE
PERFORMED IN THE SAME ORDER IN ALL COPIES

A GOOD SOLUTION MUST BE

• DEADLOCK FREE

• SPEED INDEPENDENT

• PARTIALLY OPERABLE

CONCURRENCY CONTROL

CORRECTNESS => SERIALIZABLE EXECUTIONS

SERIALIZABLE EXECUTION=>SERIAL EXECUTION

SERIAL EXECUTION=>NO CONCURRENCY

• TWO OPERATIONS ARE SAID TO CONFLICT IF
THEY OPERATE ON THE SAME DATA ITEM AND
AT LEAST ONE IS A WRITE.

• TWO TYPES OF CONFLICTS:

– WRITE-WRITE (WW)

– READ-WRITE (RW)

CONCURRENCY CONTROL (CONT’D)

• BERNSTEIN AND GOODMAN SEPARATE
TECHNIQUES MAY BE USED TO INSURE RW AND
WW SYNCHRONIZATION.

THE TWO TECHNIQUES CAN BE “GLUED”
TOGETHER VIA AN INTERFACE WHICH ASSURES
ONE SERIAL ORDER CONSISTENT WITH BOTH.

DEFINITIONS OF CONCURRENCY
CONTROL

• A SCHEDULE (HISTORY OR LOG) IS A SEQUENCE
OF OPERATIONS PERFORMED BY TRANSACTIONS

S 1: R i (X) Rj (X) Wi (y) Rk (y) Wj (X)

• TWO TRANSACTIONS Ti AND Tj EXECUTE
SERIALLY ON A SCHEDULE S IF THE LAST
OPERATION OF Ti PRECEDES THE FIRST
OPERATION OF Tj IN S; OTHERWISE THEY
EXECUTE CONCURRENTLY IN IT.

• A SCHEDULE IS SERIAL IF NO TRANSACTIONS
EXECUTE CONCURRENTLY IN IT.

FOR EXAMPLE

 S 2: R i (X)Wi (X)R j (X)Wj (y)R k (y)W k (X) = T iT jTk

DEFINITIONS OF CONCURRENCY
CONTROL (CONT’D)

• GIVEN A SCHEDULE S, OPERATION Oi PRECEDES
Oj (Oi < Oj), IF Oi APPEARS TO THE LEFT OF Oj IN S.

• A SCHEDULE IS CORRECT IF IT IS SERIALIZABLE;
IT IS COMPUTATIONALLY EQUIVALENT TO A
SERIAL SCHEDULE.

SERIALIZABILITY IN A DISTRIBUTED
DATABASE

• SERIALIZABILITY OF LOCAL SCHEDULES IS NOT
SUFFICIENT TO ENSURE THE CORRECTNESS OF
THE EXECUTIONS OF A SET OF DISTRIBUTED
TRANSACTIONS.

• FOR EXAMPLE:

S1: Ti > Tj

S2: Tj > Ti

• THUS, THE EXECUTION OF Ti..., Tn IS CORRECT IF

1)EACH LOCAL SCHEDULE Sk IS SERIALIZABLE

SERIALIZABILITY IN A DISTRIBUTED
DATABASE (CONT’D)

• THUS, THE EXECUTION OF Ti..., Tn IS CORRECT IF

2) THERE EXISTS A TOTAL ORDER OF T1, ..., Tn

SUCH THAT IF Ti < Tj IN THIS TOTAL ORDERING,
THEN THERE IS A SERIAL SCHEDULE Sk’, SUCH
THAT Sk IS EQUIVALENT TO Sk’ AND Ti < Tj IN Sk’

FOR SITE K.

CONSISTENCY CONTROL TECHNIQUES

• TIME STAMPS

• LOCKING

– PRIMARY SITE LOCKING

• EXCLUSIVE-WRITER

– EXCLUSIVE-WRITER USING SEQUENCE
NUMBER

– EXCLUSIVE-WRITER USING SEQUENCE
NUMBER WITH LOCK OPTIONS

TWO PHASE LOCKING (2PL)

• READ AND WRITE LOCKS

• LOCKS MAY BE OBTAINED ONLY IF THEY DO NOT
CONFLICT WITH A LOCK OWNED BY ANOTHER
TRANSACTIONS.

• CONFLICTS OCCUR ONLY IF THE LOCKS REFER TO
THE SAME DATA ITEM AND:

• RW - ONE IS A READ LOCK AND THE OTHER
IS A WRITE LOCK

• WW - BOTH ARE WRITE LOCKS

TWO PHASE LOCKING (2PL) (CONT’D)

“TWO-PHASED-NESS”

• GROWING PHASE

• LOCKED-POINT

• SHRINKING PHASE

• ONCE A LOCK IS RELEASED, NO NEW LOCKS
MAY BE OBTAINED

• LOCKED POINTS DETERMINES
SERIALIZATION ORDER

CENTRALIZED LOCKING ALGORITHM

• ALL REQUESTS FOR RESOURCES MUST BE SENT
TO ONE SITE CALLED THE LOCK CONTROLLER

• THE LOCK CONTROLLER MAINTAINS A LOCK
TABLE FOR ALL THE RESOURCES IN THE SYSTEM

• BEFORE A SITE CAN EXECUTE A TRANSACTION,
IT MUST OBTAIN THE REQUIRED LOCKS FROM
THE LOCK CONTROLLER

• ADVANTAGE:

– FEWER MESSAGES REQUIRED FOR SETTING
LOCKS THAN IN DISTRIBUTED LOCKING
ALGORITHMS

CENTRALIZED LOCKING ALGORITHM
(CONT’D)

• DISADVANTAGES:

– POOR RELIABILITY; BACKUP SYSTEM
REQUIRED

– LOCK CONTROLLER MUST HANDLE LARGE
TRAFFIC VOLUME

DISTRIBUTED LOCKING ALGORITHM

1. WAIT FOR A TRANSACTION REQUEST FROM

 USER

2. SEND n LOCK REQUEST MESSAGE

3. IN CASE OF ANY LOCK REJECT SEND LOCK
RELEASE AND GO TO 2 TO RETRY AFTER A
RANDOM INTERNAL OF TIME

4. PERFORM LOCAL TRANSACTION AND SEND n
UPDATE MESSAGES

5. WAIT FOR UPDATE ACK MESSAGES

DISTRIBUTED LOCKING ALGORITHM
(CONT’D)

6. SEND n LOCK RELEASES, NOTIFY USER THE
TRANSACTION IS DONE, GO TO 1

– 5 n COMPUTER TO COMPUTER MESSAGE

– TIME CONSUMING

– LONG DELAY

VOTING ALGORITHM

• THE DATA BASE MANAGER PROCESS SENDS AN UPDATE
REQUEST TO THE OTHER DBMP

• THE REQUESTS CONTAIN THE VARIABLES THAT
PARTICIPATE IN THE QUERY WITH THEIR TIME STAMPS,
AND THE NEW VALUES FOR THE UPDATES VARIABLES.

• EACH DBMP VOTES OK, REJ, OR PASS, OR DEFERS VOTING

• THE TRANSACTION IS ACCEPTED OF THE MAJORITY VOTED
OK

IF TWO REQUESTS ARE ACCEPTED, IT MEANS THAT AT LEAST
ONE DBMP VOTED OK FOR BOTH.

BROADCAST 2.5 n TRANSMISSION

DAISY CHAIN 1.5 n TRANSMISSION

CHARACTERISTICS OF PRIMARY SITE
LOCKING

• SERIALIZABILITY

• MUTUAL CONSISTENCY

• MODERATE TO HIGH COMPLEXITY

• CAN CAUSE DEADLOCKS

• INTERCOMPUTER SYNCHRONIZATION DELAYS

VARIABLE LEVEL OF SYNCHRONIZATION

• GLOBAL DATABASE LOCK IS NOT REQUIRED BY MOST OF
THE TRANSACTIONS

• DIFFERENT TYPES OF TRANSACTIONS NEED DIFFERENT
LEVELS OF SYNCHRONIZATION

• THE LEVEL OF SYNCHRONIZATION CAN BE REPRESENTED
BY ALGORITHMS (PROTOCOLS) WHICH ARE EXECUTED
WHEN A TRANSACTION IS REQUESTED.

GOAL: EACH TRANSACTION SHOULD RUN UNDER THE
PROTOCOL THAT GIVES THE LEAST DELAY WITHOUT
COMPROMISING THE CONSISTENCY.

IN SDD-1, FOUR PROTOCOLS ARE AVAILABLE. DIFFERENT
LEVELS OF SYNCHRONIZATION YIELD DIFFERENT DELAYS.

DISADVANTAGE: HIGH OVERHEAD COSTS.

THE EXCLUSIVE-WRITER PROTOCOL

• IMPLEMENTATION REQUIREMENTS

– EACH COPY OF A FILE HAS AN UPDATE SEQUENCE
NUMBER (SN)

• OPERATION

– ONLY THE EXCLUSIVE-WRITER (EW) DISTRIBUTES FILE
UPDATES

– UPDATING TASKS SENDS TO THE EW’S SITE UPDATE-
REQUEST MESSAGES (UPDATE AND SN)

– BEFORE THE EW DISTRIBUTES A FILE UPDATE, IT
INCREMENTS THE FILE’S SN

– THE EW DETECTS A DATA CONFLICT WHEN THE SN IN
THE UPDATE-REQUEST IS LESS THAN THE SN OF THE
CORRESPONDING FILE AT THE EW’S SITE

COMPARISON OF PSL AND THE EWP

• PSL

– NO DISCARDED UPDATES

– INTERCOMPUTER SYNCHRONIZATION DELAYS

– CAN CAUSE DEADLOCKS

• EWP

– CONFLICTING UPDATES ARE DISCARDED (EWP
WITHOUT LOCK OPTION)

– NONITERCOMPUTER SYNCHRONIZATION DELAYS

– LOWER MESSAGE VOLUME THAN PSL

• DESIGN ISSUE

– SELECTION OF PRIMARY SITE AND EXCLUSIVE-WRITER
SITE

– LIMITED REPLICATION OF SHARED FILES

COMPARISON OF PSL AND THE EWP

• PERFORMANCE ANALYSIS

– VOLUME OF MESSAGE

– RESPONSE TIME

– PROCESSING OVERHEAD

Escrow Locking
Pat O’Neil

For updating numerical values

– money

– disk space

Uses Primary Site

Lock in advance only the required amount (Errors)

Release excess resources after execution

Advantage:

– Less lock conflict, therefore more data availability

– Less concurrency control overhead for update, good for long
transactions

Disadvantage:

– Weak data consistency

– Data usually are inconsistent, but within a certain bond

Escrow Locking (cont’d)

EXAMPLE:

Bank account with $50

Need to clear a check for up to $30

Escrow lock $30 - other $20 is still available

If check is only for $25, return remaining $5

Escrow Locking under Partitioning

Similar to PSL

only Primary Site partition can update

Primary Site may be isolated in a small partition

Further

escrows may be outstanding when partitioning occurs

Solution

– grant the escrow amount to each partition

– based on user profile/history

– based on size/importance of the partitions

Escrow Locking under Partitioning (cont’d)

EXAMPLE:

– Escrow amount = total amount/# of partitions

Bank account with $50

If two partitions occur

escrow $25 in each partition (for that partition to use)

If some updates require $30, then update will be blocked

– Based on historical information, give different escrow portions to
different partitions

Eg. Escrow for partition A= 35

 Escrow for partition B=15

– Use normal escrow locking in each partition

– reconcile database afterwards

DEADLOCK AVOIDANCE

• Priority

• Timestamps: A transaction’s timestamp is the
time at which it begins execution. Old
transactions have higher priority than younger
ones.

Timestamp deadlock prevention schemes

• Assume older transaction has higher priority than younger transaction.

• Wait-Die-Non-preemptive technique.

If T i requests a lock on a data item which is already locked by T j and if

T i has higher priority than T j (i.e., T i is younger than T j), then T i is

permitted to wait. If T i is younger than T j , then T i is aborted (“dies”)

and restarts with the same timestamp.

“It is better always to restart the younger transaction.”

• Wound-Wait-Preemptive counterpart to wait-die.

Timestamp deadlock prevention schemes (cont’d)

Assume T i requests lock on a data item which is already locked by T j . If
it is younger than T j , then T i is permitted to wait. If it is older T j ,
then T j is aborted and the lock is granted to T i.

“Allow older transactions to pre-empt younger ones and therefore only
younger transactions wait for older ones.”

IMPLEMENTATION APPROACHES

• Centralized

Periodically (e.g., few minutes) each schedule sends its local
wait-for graph to the deadlock detector. The deadlock detector
combines the local graphs into a system wide wait-for graph by
constructing the union of the local graphs.

• Hierarchical

The data base sites are organized into a hierarchy (or tree), with a
deadlock detector at each node of the hierarchy. Deadlocks local to a
single site are detected at that site. Deadlock involving two or more
sites are detected by the regional deadlock detector, and so on.

Deadlock Detection in Distributed Systems.

Local wait - for graphs are not sufficient to characterize all
deadlocks in the distributed systems. Instead, local wait-
for graphs must be combined into a more global wait-for
graph. Centralized 2PL does not have this problem since
there is only one lock schedule. However, in the case of a
distributed lock schedule, the coordination task becomes
very complex.

Periodic transmission of a local wait-for graph can cause
the following two problems:

1.) Deadlock may not be detected right away

2.) Phantom deadlock - Transaction T may restart
 other than concurrency control (e.g. its site

 crashed). Until T’s restart propagates to the

 deadlock detector, the deadlock detector can find

 a cycle in the wait-for graph that includes T.

Deadlock Avoidance Method Used in Practice

• In the absence of a general analysis which determines the
tradeoff of various deadlock avoidance methods, as well as
the lack of understanding of complex interrelationships of
deadlock among protocol levels, the commercial systems
and real life applications are mainly based in the most
experienced method: 2-phase locking with time-out based
deadlock detection.

RESILIENT COMMIT PROTOCOL

IF AN UPDATE IS POSTED AT ANY OPERATING SITE
ALL OTHER OPERATING SITES THAT KEEP A
COPY OF THE FILE WILL EVENTUALLY RECEIVE
THE UPDATE REGARDLESS OF MULTIPLE
FAILURES.

FOR LOOSELY COUPLED SYSTEMS

CONVENTIONAL TECHNIQUE

• TWO PHASE COMMIT PROTOCOL HAS BLOCKING
PROBLEM WHEN COORDINATOR FAILS.

• THREE PHASE COMMIT PROTOCOL NONE BLOCKING,
BUT TOO TIME CONSUMING

THEREFORE, THESE TECHNIQUES ARE NOT SUITABLE FOR
REAL TIME SYSTEM APPLICATIONS.

A LOW-COST COMMIT PROTOCOL

ASSUMPTIONS

• NO NETWORK PARTITION

• NO RELIABLE NETWORK (E.G., NO LOSS OF
MESSAGES, NO OUT OF SEQUENCE MESSAGES)

• “I AM ALIVE” MESSAGES ARE PERIODICALLY
EXCHANGED AMONG THE SITES FOR FAILURE
DETECTION (IN LIEU OF TIME OUT AND
ACKNOWLEDGMENT MESSAGES)

• FAILURE SITES ARE NOT ALLOWED TO REJOIN THE
SYSTEM DURING A MISSION TIME (COULD BE
RELAXED)

• ALL THE UPDATES REQUIRED FOR A TRANSACTION
RESIDE AT THE COORDINATOR SITE

COMMIT PROTOCOL PROCEDURES

• FOR EACH FILE, SITES ARE NUMBERED AND UPDATES ARE
SENT IN THIS SEQUENCE NUMBER.

• UPDATES ARE POSTED IMMEDIATELY AFTER BEING
RECEIVED

• EACH SITE SAVES THE LAST UPDATES FROM ALL OTHER
SITES

• WHEN A SITE FAILURE IS DETECTED, THE SMALLEST
NUMBERED SURVIVING SITE RETRANSMITS THE LAST
UPDATE RECEIVED FROM THE FAILURE SITE IN THE
NUMBERED SEQUENCE.

• UPDATE SEQUENCE NUMBER IS USED TO DETECT
DUPLICATES.

REDUCING MESSAGES FOR FAILURE
RECOVERY

• A COORDINATOR SEND AN UPDATE COMPLETE (UC)
MESSAGE TO THE SMALLEST NUMBERED SITE AFTER
COMPLETING AN UPDATES BROADCAST.

• WHEN A SITE RECEIVES THE UC MESSAGE, IT DISCARDS
THE SAVED UPDATE.

• THIS WILL ELIMINATE UNNECESSARY RETRANSMISSION
OF COMPLETED UPDATES.

RESILIENT EWP OPERATION

• SITES ARE NUMBERED AND THE SITE WITH THE SMALLEST
NUMBER IS SELECTED AS THE EW.

• EW SENDS AN UPDATE TO OTHER SITES IN THE NUMBER
SEQUENCE (I.E., LOWEST NUMBERED SITE FIRST, HIGHEST
NUMBERED SITE LAST).

• EACH NON-EW SITE SHOULD SAVE THE LAST UPDATE
RECEIVED FROM THE EW.

• WHEN EW FAILS, THE SITE WITH THE NEXT SMALLEST
NUMBER BECOMES THE NEW EW AND RETRANSMITS THE
LAST UPDATE RECEIVED FROM THE OLD EW IN THE
NUMBER SEQUENCE.

RESILIENT PSL OPERATION

• SITES ARE NUMBERED, ASSIGN THE SITE WITH THE
SMALLEST NUMBER AS THE PS.

• UPDATES ARE BROADCAST IN THE NUMBER SEQUENCE.

• EACH SITE SAVES THE LAST UPDATES FROM ALL OTHER
SITES.

• WHEN A NON-PS FAILURE IS DETECTED

– IF THE FAILED SITE IS HOLDING A LOCK, THE LOCK IS
RELEASED BY THE PS.

– IF THE FAILED SITE HAS MADE A LOCK-REQUEST THE
LOCK-REQUEST IS DISCARDED BY THE PS.

– OTHERWISE, THE PS BROADCASTS THE LAST UPDATE
RECEIVED FROM THE FAILED SITE IN THE NUMBER
SEQUENCE.

• WHEN THE PS FAILS:

– THE SITE WITH THE NEXT SMALLEST NUMBER
BECOMES THE NEW PS.

– TJE NEW PS BROADCASTS THE LAST UPDATE
RECEIVED FROM THE OLD PS IN THE NUMBER
SEQUENCE.

– TO RESUME LOCK MANAGEMENT, THE NEW PS
REQUESTS THE LOCK-STATUS OF OTHER SITES

SITE RECOVERY

• THE RECOVERING SITE UNDOES THE LAST UPDATE ALONG
WITH THE SN AND BROADCASTS “I AM UP” MESSAGE.

• THE RECOVERING SITE IS GIVEN THE SITE NUMBER
LARGER THAN ANY SURVIVING SITE NUMBER.

• AN OPERATING SITE IS SELECTED TO PROVIDE ALL LOST
UPDATES FOR THE RECOVERING SITE.

• THE POSTING OF NEWLY INCOMING UPDATES (AT THE
RECOVERING SITE) IS POSTPONED UNTIL ALL LOST
UPDATES ARE RECEIVED.

SUMMARY

• UPDATE BROADCAST IN ONE PHASE ACCORDING TO A
PREASSIGNED SITE SEQUENCE.

 PARAMETER: FREQUENCY OF “I AM ALIVE” MESSAGE.

• REQUIRES ADDITIONAL OVEHEAD ONLY WHEN FAILURE
OCCURS

• THE RESILIENT COMMIT PROTOCOL CAN BE
INCORPORATED INTO CONCURRENCY CONTROL
TECHNIQUES (E.G., PSL,EWP).

• THE RESILIENT COMMIT PROTOCOL IS SUITABLE FOR REAL
TIME APPLICATIONS.

A QUERY PROCESSING EXAMPLE FOR A
DISTRIBUTED DATABASE SYSTEM

Database (suppliers, parts, and supply):

S (S#, CITY) 10,000tuples, stored at site A

P (P #, COLOR) 100,000 tuples, stored at site B

SP (S#, P#) 1,000,000 tuples, stored at site A

Assume that every tuple is 100 bits long.

Query: suppliers numbers for London suppliers of red parts

SELECT S.S. #

FROM S, SP, P

WHERE S.CITY = ‘LONDON’

 AND S.S.# = SP.S#

 AND SP.P# = P.P#

 AND P.COLOR = ‘RED’

A QUERY PROCESSING EXAMPLE FOR A
DISTRIBUTED DATABASE SYSTEM

(CONT’D)

Estimates (cardinalities of certain intermediate results):

Number of red parts = 10

Number of shipments by London suppliers = 100,000

Communication assumptions:

Data rate = 10,000 bits per second

Access delay = 1 second

T [i] = total access delay + (total data volume/ date rate)

 = (number of message * 1) + (total number of bits / 10,000)

(measured in seconds).

COMMUNICATION TIME FOR SELECTED
DISTRIBUTED QUERY PROCESSING

STRATEGIES

Strategy Technique Communication Time

1 Move P to A 16.7 min

2 Move S and SP to B 28 hr

3 For each London shipment 2.3 day

check corresponding part

4 For each red part, 20 sec

check for London supplier

5 Move London 16.7 min

shipments to B

6 Move red parts to A 1 sec

DISTRIBUTED QUERY PROCESSING
PROBLEM

• GIVEN A QUERY THAT REFERENCES INFORMATION
STORED IN SEVERAL DIFFERENT SITES:

1. DECOMPOSE IT INTO A SET OF SUBQUERIES OR

 OPERATIONS TO BE PERFORMED AT INDIVIDUAL

 SITES.

2. DETERMINE THE SITE FOR PERFORMING EACH
 OPERATION

COST OF A QUERY PROCESSING POLICY
DEPENDS ON:

– VOLUME OF DATA TRAFFIC,

– SEQUENCE OF OPERATIONS,

– DEGREE OF PARALLELISM,

– SITES OF OPERATIONS.

QUERY TREE

• A QUERY TREE REPRESENTS EACH SEQUENCE OF
OPERATION THAT PRODUCES THE CORRECT
RESULT.

• GIVEN AN ARBITRARY QUERY TREE, A SET OF
EQUIVALENT QUERY TREES CAN BE GENERATED
USING THE COMMUTATIVITY, ASSOCIATIVITY,
AND DISTRIBUTIVITY PROPERTIES OF QUERY
OPERATIONS.

PROPERTY OF QUERY OPERATIONS

– COMMUTATIVITY

– ASSOCIATIVITY

– DISTRIBUTATIVITY

UNARY OPERATIONS (e.g., SELECTION, PROJECTION)

BINARY OPERATIONS (e.g., JOIN, UNION, INTERSECTION,
DIFFERENCE, DIVISION)

ADJACENT UNARY OPERATIONS

ADJACENT BINARY OPERATIONS

ADJACENT UNARY AND BINARY OPERATIONS

PLACEMENT OF UNARY OPERATION IN A
QUERY TREE

THEOREM 1

PLACING EACH UNARY OPERATION AT THE LOWEST
POSSIBLE POSITION IN A QUERY TREE IS A NECESSARY
CONDITION TO OBTAIN THE OPTIMAL QUERY PROCESSING
POLICY.

COROLLARY

IF THE OPTIMAL PLACEMENT OF A UNARY OPERATION IS
ADJACENT TO TWO BINARY OPERATIONS, THEN A
NECESSARY CONDITION TO OBTAIN THE OPTIMAL QUERY
PROCESSING POLICY IS TO PROCESS THE UNARY
OPERATION AT THE SAME SITE AS THE BINARY
OPERATION THAT HAS THE LOWER POSITION IN THE TREE
(i.e., PROCESSED EARLIER).

QUERY PROCESSING GRAPH

• 1. SEQUENCE OF OPERATIONS

2. GROUPS OF OPERATIONS PERFORMED AT A SINGLE SITE

• STORAGE NODES HAVE NO INPUTS, AND REPRESENT
INITIAL OPERATIONS ON FILE

• EXECUTION NODES HAVE ONE OR MORE INPUTS AND
REPRESENT MULTI-FILE OPERATIONS.

THEOREM 3

FOR A GIVEN QUERY PROCESSING GRAPH, IF THE
UNIT COMMUNICATION COSTS AMONG
DIFFERENT PAIRS OF COMPUTERS ARE THE
SAME, AND THE PROCESSING COSTS FOR A
GIVEN OPERATION ARE THE SAME FOR ALL THE
COMPUTERS, THEN FOR EACH EXECUTION NODE
OF THE GRAPH, SELECTING THE STORAGE NODE
SITE THAT SENDS THE LARGEST AMOUNT OF
DATA TO THAT EXECUTION NODE AS THE SITE
FOR PERFORMING ITS OPERATIONS YIELDS
MINIMUM OPERATING COST FOR THAT GRAPH.

THEOREM 4

IF THE UNIT COMMUNICATION COSTS AMONG
DIFFERENT PAIRS OF COMPUTERS IN THE
DISTRIBUTED DATABASE ARE THE SAME, AND
THE PROCESSING COST FOR A GIVEN OPERATION
IS THE SAME FOR ALL THE COMPUTERS, IF THE
SITE SELECTION FOR A GIVEN QUERY
PROCESSING GRAPH BASED ON THEOREM 3 IS
INCONSISTENT, THEN THAT GRAPH CAN BE
REDUCED TO A SIMPLER GRAPH (ONE WITH A
LESSER NUMBER OF NODES) WHICH HAS THE
SAME SEQUENCES OF OPERATIONS. FURTHER,
THE REDUCED GRAPH YIELDS LOWER
OPERATING COST THAN THAT OF THE ORIGINAL
GRAPH.

THEOREM 5

IF A QUERY PROCESSING GRAPH HAS AN
EXECUTION NODE THAT HAS NO ADJACENT
STORAGE NODES, THEN THIS GRAPH CANNOT
PRODUCE THE OPTIMAL QUERY PROCESSING
POLICY.

THEOREM 6

FOR A GIVEN QUERY PROCESSING GRAPH THAT
CONTAINS A MULTI-OPERATION EXECUTION
NODE CONSISTING OF A SET OF OPERATIONS (

), THE SEQUENCE OF OPERATIONS FROM
THIS SET WHICH HAS LEAST PROCESSING COST
IS USED BY THE POLICY THAT HAS LEAST
OPERATING COST FOR THIS GRAPH.

COROLLARY

THEOREM 6 IS TRUE FOR A QUERY PROCESSING
GRAPH WITH MORE THAN ONE MULTI-
OPERATION EXECUTION NODE.

THEOREM 7

IF THE PROCESSING COST FOR A GIVEN
OPERATION IS THE SAME FOR ALL THE
COMPUTERS IN THE DISTRIBUTED DATABASE
AND, FURTHER, IF THE SEQUENCE OF
OPERATIONS FOR PROCESSING THE OPERATION
IS FIXED, THEN THE PROCESSING POLICY THAT
MINIMIZES THE COMMUNICATION COST (TOTAL
VOLUME OF TRAFFIC FOR THE CASE OF THE
COMMUNICATION COST AMONG EACH PAIR OF
COMPUTERS BEING EQUAL) YIELDS THE LOWEST
OPERATING COST AMONG THE SET OF POLICIES
THAT USES THIS FIXED SEQUENCE OF
OPERATIONS.

• QUERY TREE OPTIMIZATION OF UNARY
OPERATIONS THEOREM 1

• COMPLETE GENERATION OF LOCAL OPERATION
GROUPS FROM THE QUERY TREE: THEOREM 2

• SITE SELECTION: THEOREM 3,4,&5 TOGETHER
WITH FILE ALLOCATION INFORMATION

• COMPUTATION REDUCTION: THEOREM 6

• LOCAL OPTIMAL QUERY POLICIES: THEOREM 7

PROCEDURE FOR FINDING THE OPTIMAL QUERY
PROCESSING POLICY

• DECOMPOSE QUERY INTO OPERATIONS.

• GENERATE THE SET OF EQUIVALENT QUERY TREES USING
PROPERTIES OF QUERY OPERATIONS AND THEOREM 1

• GENERATE QUERY PROCESSING GRAPHS FROM THE QUERY
TREES (USING THE ICM).

• SITE SELECTION USING THEOREMS 3,4 & 5.

• ELIMINATE CERTAIN GRAPHS USING THEOREM 6.

• COMPUTE COMMUNICATION COST FOR EACH GRAPH.

• SELECT LOCAL OPTIMAL POLICIES BASED ON THEOREM 7

• SELECT GLOBAL OPTIMAL POLICY.

EXAMPLE

• GENERATE A LISTING OF < PART NUMBER,
SUPPLIER NAME, QUANTITY > FOR ALL
“WHEELS” PRODUCED IN LOS ANGELES IN
A QUANTITY GREATER THAN 1,000 BY
ANY ONE SUPPLIER.

QUERY PROCESSING WITH

DOMAIN SEMANTICS

Wesley W. Chu

Computer Science Department

University of California

Los Angeles

QUERY OPTIMIZATION PROBLEM

To find a sequence of operations which has the
minimal processing cost.

CONVENTIONAL QUERY OPTIMIZATION
(CQO)

For a given query:

• Generate a set of query that are equivalent to the given
query.

• Determine the processing cost of each such query.

• Select the lowest cost query processing strategy among
these equivalent query.

LIMITATIONS OF CQO

• There are certain queries that cannot be optimized by
Conventional Query Optimization.

• For example, given the query:

“Which ships have deadweight greater than 200
thousand tons?”

search of entire database may be required to answer this
query.

THE USE OF KNOWLEDGE

• ASSUMING EXPERT KNOWS THAT:

1. SHIP relation is indexed on ShipType. There are about 10 different
ship types, and

2. the ship must be a “SuperTanker” (one of the ShipTypes) if the
deadweight is greater than 150K tons.

• AUGMENTED QUERY:

“Which SuperTanker have deadweight greater than

200K tons?”

• RESULT:

About 90% time saved in searching the answers.

The technique of improving queries with semantic knowledge is called
Semantic Query Optimization.

SEMANTIC QUERY OPTIMIZATION (SQO)

Uses domain knowledge to transform the original query into a more
efficient query yet still yields the same answer.

Assuming a set of integrity constraints is available as the domain
knowledge,

• Represent each set of integrity constraints as Pi Ci, where 1< i < n.

• Translate (Augment) original query Q into Q’ subject to C1, C2,,Cn,
such that Q’ yields lower processing cost than Q.

• Query Optimization Problem: Find C1, C2,,..., Cm that yields minimal
query processing cost; that is, C(Q’) = min C(Q C1 ... Cm)

SEMANTIC EQUIVALENCE

Domain knowledge of the database application maybe used to transform
the original query into semantically equivalent queries.

Semantic Equivalence:

Two queries are considered to be semantically equivalent if they result
in the same answer in any state of the database that conforms to the
Integrity Constraints.

Integrity Constraints:

A set if rules that enforce the database to be accurate instance of the
real world database application.

SEMANTICAL EQUIVALENCE(cont’d)

Integrity Constraints:

– state snapshot constraints

e.g., if deadweight > 150K then ShipType = “SuperTanker.”

– state transition constraints:

e.g., salary can only be increased, i.e., salary (new) > salary
 (old).

LIMITATIONS OF CURRENT APPROACH

Current approach of SQO using :

• Integrity constraints as knowledge

• Conventional data models

LIMITATION OF INTEGRITY
CONSTRAINTS

• Integrity constraints are often too general to be useful in SQO,
because:

– integrity constraints describe every possible database state

– user is only concerned with the current database content.

• Most database do not provide integrity checking due to :

– unavailability of integrity constraints

– overhead of checking the integrity.

Thus, the usefulness of integrity constraints in SQO is quite limited.

LIMITATIONS OF CONVENTIONAL DATA
MODELS

Conventional data models lack expressive capability for modeling
conveniences. Many useful semantics are ignored. Therefore, limited
knowledge are collected.

FOR EXAMPLE:

“Which employee earn more than 70K a year?”

the integrity constraint:

“The salary range of employee is between 20K to 90K.”

is useless in improving this query.

AUGMENTATION OF SQO WITH SEMANTIC
DATA MODELS

If the employees are divided into three categories: MANAGERS,
ENGINEERS, STAFFS, and each category is associated with some
constraints:

1. The salary range of MANAGERS is from 35K to 90K.

2. The salary range of ENGINEERS is from 25K to 60K.

3. The salary range of STAFF is from 20K to 35K.

A better query can be obtained:

“Which managers earn more than 70K a year?”

SUMMARY

Contributions:

Providing a model-based methodology for acquiring knowledge from
the database by rule induction.

Applications:

1. Semantic Query Processing -

use semantic knowledge to improve query processing
performance

2. Deductive Database Systems -

use induced rules to provide intensional answers.

3. Data Inference Applications -

use rules to improve data availability by inferring inaccessible
data from accessible data.

DATABASE SEMANTICS

Database semantics can be classified into:

• database structure, which is the description of the interrelationships
between database objects.

• database characteristics, which defines the characteristics and
properties of each object type.

However, only tools for modeling database structure are available. Very
few tools exist in gathering and maintaining the database
characteristics.

KNOWLEDGE ACQUISITION

A major problem in the development of a knowledge-based data
processing system.

– Knowledge Engineers - persons in the use of expert system tools.

– Domain Experts - persons with the expertise of the application
domain.

The Process:

– Studying literature to obtain fundamental background.

– Interacting with domain experts to get their expertise.

– Translating the expertise into knowledge representation.

– Refining knowledge base through testing and further interacting
with domain experts.

A VERY TIME-CONSUMING TASK!

KNOWLEDGE ACQUISITION DATABASE

• database schema is defined according to database
semantics, and

• database instances are constrained by the database
charateristics,

Thus,

– database characteristics can be induced as the semantic
knowledge from the database

– database schema can be a useful tool to guide the
knowledge acquisition.

KNOWLEDGE ACQUISITION BY RULE
INDUCTION

Given and object hierarchy and a set of database instances contained in
the object hierarchy, a set of classification rules can be induced by
inductive learning techniques .

Given:

H - an object type hierarchy : H1,....,Hn

S - object schema

I - database instances representing H

Find:

D - a set of descriptions, D1,..., Dn such that

for all x, x in I ,

if Di (x) is true, then x ISA Hi .

KNOWLEDGE ACQUISITION BY RULE
INDUCTION (CONT’D)

Example:

SUBMARINES contains SSN, SSBN

DSSN : 2145 < Displacement < 6955

DSSBN : 7250 < Displacement < 30000

MODEL-BASED KNOWLEDGE
ACQUISITION METHODOLOGY

The methodology consists of:

• a Knowledge-based ER (KER) Model,

• a knowledge acquisition methodology, and

• a rule induction algorithm.

KER is used as a knowledge acquisition tool when

– no knowledge specification is provided, or

– the database already exists.

KNOWLEDGE-BASED (KER) MODEL

To capture the database characteristics, a Knowledge-based Entity
Relationship (KER) is proposed to extend the basic ER model to
provide knowledge specification capability.

A KER schema is defined by the following constructs:

1. has-attributed/ with (aggregation)

 This construct links an object with other objects and specify certain

 properties of the object.

2. isa/with (generalization)

 This construct specifies a type/subtype relationship between object

 types.

KNOWLEDGE-BASED ER (KER) MODEL
(CONT’D)

3. has-instance (classification)

 This construct links a type to an object that is an instance of that

 type.

The knowledge specification is represented by the with-constraint
specification.

CLASSIFICATION OF SEMANTIC
KNOWLEDGE

Domain knowledge:

Specifying the static properties of entities and relationships.

e.g., displacement in the range of (0 - 30,000)

Intra-Structure knowledge:

Specifying the relationships between attributes within an object
(an entity or a relationship).

e.g., if the displacement is less than 7000, then it is a
nuclear submarine.

Inter-Structure knowledge:

Specifying the relationship that is related to attributes of several
entities of the aggregation relationship.

CLASSIFICATION OF SEMANTIC
KNOWLEDGE (CONT’D)

Inter-Structure knowledge:

Specifying the relationship that is related to attributes of several
entities of the aggregation relationship.

e.g., the instructor’s department must be the same as the department of
the class offered.

KNOWLEDGE ACQUISITION
METHODOLOGY

To provide a systematical way of collecting domain knowledge guided by
the database schema. It consists of three steps:

• Schema Generating - using KER.

a. Identify entities and associated attributes.

b. Identify type hierarchies by determining the class
attributes of each type hierarchy.

c. Identify aggregation relationships. Define each
referential key as a class attribute.

• Rule Induction.

• Knowledge Base Refinement.

RULE INDUCTION ALGORITHM

Semantic rules for pairwise attributes (X --> Y) are induced using the
relational opaerations.

Sketch of the Algorithm:

1. Retrieving (X,Y) value pairs.

 Retrieve the instance of the (X,Y) pair from the database. Let S be

 the result.

2. Removing inconsistent (X,Y) value pairs.

 Retrieve all the (X,Y) pairs that for the same value of X has

 multiple values of Y. Let T be the result.

 Let S = S -T .

RULE INDUCTION ALGORITHM (CONT’D)

3. Constructing Rules.

 For each distinct value of Y in S, say y, determine the value range x

 of X and create a rule in the form of

if x1 < X < x2 then Y=y.

EXAMPLES OF INDUCED RULES

A prototype system was implemented at UCLA using a naval ship
database as a test bed. Examples of rules induced are :

Entity: SUBMARINE

x isa SUBMARINE

R1 : if 0101 < x.Class < 0103 then x isa SSBN

R2 : if 0201 < x.Class < 0215 then x isa SSN

R3 : if Skate < x.ClassName < Thresher then x isa SSN

R4 : if 2145 < x.Displacement < 6955 then x isa SSN

R5 : if 7250 < x.Displacement < 30000 then x isa SSBN

EXAMPLES OF INDUCED RULES (CONT’D)

Relationship: INSTALL

x isa SUBMARINE and y isa SONAR

R1: if SSN582 < x.Id = SSN601 then y isa BQS

R2: if SSN604 < x.Id = SSN671 then y isa BQQ

R3: if x.Class = 0203 then y isa BQQ

R4: if 0205 < x.Class < 0207 then y isa BQQ

R5: if 0208 < x.Class < 0215 then y isa BQS

R6: if y.Sonar = BQS-04 then x isa SSN

PRUNING THE RULE SET

When the number of rules generated becomes too large, the system must

reduce the size of the knowledge base.

Two Criteria for Rule Pruning:

1. Coverage.

Keep the rules that are satisfied by more than Nc instances

and drop those rules that are satisfied by less than Nc instances.

2. Completeness.

Keep the rule schema (X --> Y) that the total number of instances

satisfied by the rules of the same scheme is greater than a
coverage threshold Cc.

SUMMARY

• Contirbutions:

Providing a model-based methodology for acquiring knowledge

from the database by rule induction.

• Applications:

1. Semantic Query Processing -

 use sematic knowledge to improve query processing

 performance.

2. Deductive Database Systems -

 use induced rules to provide intensional answers.

3. Data Inference Applications -

 use rules to improve data availability by inferring inaccessible

 data from accessible data.

Generate the Rules

• Select targets

 Targets are the RHS attributes of rules.

Method of selection.

• Use indices as targets

• Use selectivity

selectivity = # of tuples with disticnt value / total # of tuples

• Targets are chosen based on database schema (e.g. type

hierarchy).

• Generate rules for each target

FAULT TOLERANT DDBMS VIA DATA
INFERENCE

Network Partition

Causes: failures of

• channels

• nodes

Effects: - queries cannot be processed if the required data is

 inaccessible.

 - replicated files in different partitions may be

 inconsistent.

 - updates may only be allowed in one partition.

 - transactions may be aborted.

Conventional Approach for Handling
Network Partitioning

• Based on syntax to serialize the operations

• To ensure data consistency

– Not all queries can be processed

– Based on data availability, determine which
partition is allowed to perform database
update.

Poor Availability!

New Approach

• Exploit data and transaction semantic

– Use Data Inference Approach

• Assumption: Data are correlated

e.g.

 salary and rank

 ship type and weapon

• Infer inaccessible data

– Use semantic information to permit update
under network partitioning

Query Processing System with Data
Inference

• Consists of

– DDBMS

– Knowledge base (rule based)

– Inference engine

Motivation of Open Data Inference

• Correlated knowledge is incomplete

• Incomplete rules

• Incomplete objects

Example of Incomplete Object

Type -----> Weapon

IF type in {CG, CGN} THEN weapon = SAM01

 IF type = DDG THEN weapon = SAM02

TYPE WEAPON

CG SAM01

CGN SAM01

DDG SAM02

SSGN ??

Result: Incomplete rules generate incomplete object

Merge of Incomplete Objects

Observation:

• Relational join is not adequate for combining
incomplete objects

• lose information

Questions:

• What kind of algebraic tools do we need to combine
incomplete objects without losing information?

• Any correctness criteria to evaluate the incomplete
results?

Merge of Incomplete Objects

TYPE ---> WEAPON and WEAPON --->WARFARE

Type Weapon Weapon Warfare

CG SAM01 SAM01 WF1C

CGN SAM01 SAM03 WF1D

DDG SAM02

SSGN ?

Use relational join to combine the above two paths :

Type Weapon Warfare

CG SAM01 WF1C

CGN SAM01 WFIC

Merge of Incomplete Objects (Cont’d)

Other way to combine:

TYPE WEAPON WARFARE

CG SAM01 WF1C

CGN SAM 01 WF1C

DDG SAM02 ?

? SAM03 WF1D

SSGN ? ?

New Algebraic Tools for Incomplete
Objects

• S-REDUCTION

– Reduce redundant tuples in the object

• OPEN S-UNION

– Combine incomplete objects

S-Reduction

• Remove redundant tuples in the object

• Object RR with key attribute A is reduced to R

RR R

A B C A B C

a 1 aa a 1 aa

b 2 _ b 2 bb

c _ cc c _ cc

a 1 aa

b _ bb

c _ _

Open S-Union

• Modify join operation to accommodate oncomplete
information

• Used to combine closed/open objects

R1 R2 ----> R

 sid type type weapon sid type weapon

s101 DD DD SAM01 s101 DD SAM01

s102 DD CG - s102 DD SAM01

s103 CG s103 CG -

Open S-Union and Toleration

• Performing open union on two objects R1, R2 generates
the third object which tolerates both R1 and R2

R1 R2 ----> R

 sid type type weapon sid type weapon

s101 DD DD SAM01 s101 DD SAM01

s102 DD CG - s102 DD SAM01

s103 CG s103 CG -

• R tolerates R1

• R tolerates R2

Implementation

Derive missing relations from accessible relations and
correlated knowledge

Three types of derivations:

• View mechanism to derive new relations based ib
cretain source relations

• Valuations of incomplete relations based on
correlated knowledge

• combine two intermediate results via open s-union
operation

Example of Open Inference

DERIVATION 1: select sid, type from SHIP, CLASS

DERIVATION 2: CLASS (type) --> INSTALL (weapon)

R1 R2 ------> INSTALL_INF

 sid type type weapon sid type weapon

 sid DD DD SAM01 s101 DD SAM01

 s102 DD CG - s102 DD SAM01

 s103 CG s103 CG -

• INSTALL_INF can be used to replace missing relation INSTALL

FAULT TOLERANT DDBMS VIA INFERENCE
TECHNIQUES

• Query Processing Under Network Partitioning

• Open Inference: Inference with incomplete
information

• Algebraic tools for manipulating incomplete objects

• Toleration: weaker correctness criteria for
evaluating incomplete information

CONCLUSION

Data Inference is an effective method for

providing database fault tolerance during

network partitioning.

CoBase

Objective

Status

• CoBase Architecture

• Relaxation Mechanism

• Implementation

• Data Inference with Complete Measure

Continuing Work

New Direction

Demo

Cooperative Distributed Database Systems

The Next generation of distributed database systems, using
Inference techniques to provide:

• Fault Tolerance Capabilities

• Cooperative Query Answering

Validate concepts with prototype cooperative distributed
DDBMS

Cooperative Query Answering

Motivation

Conventional query answering

• provides too much data

• may obscure real meaning of data

• time consuming

• needs to know the detailed database schema

• cannot get approximate answer if full data is unavailable

• cannot analyze the intent of the user and derive relevant
information if the exact answer is not available

• cannot answer conceptual queries

Cooperative Query Answering

Derive Summary Answers

Derive Intensional Answers

Derive Approximate Answers

Answer Conceptual Queries

New Methodologies for Cooperative Query
Answering

Type Inference

Neighboring Inference

Type Inference

Approach

• Use knowledge induction to analyze database contents and domain
knowledge to derive a set of If- Then rules.

• Based on application domain, extend data schema with type hierarchy.

• Use induced rules to derive intensional answers from extended
schema.

Application:

• Summary answer

• intensional answer

Neighborhood Inference

Approach

• Translate a query on missing data into a related query on
available data

• Provide answers with different degrees of generality,
coverage and approximation

Mechanisms

Based on semantic knowledge, organize data in type
abstraction hierarchy

Provide multi-level knowledge representation

Support inference between different knowledge levels

• generalization

• specialization

• association

Type Abstraction Hierarchy

Abstract view of type heirarchy

Integrates:

• Subsumption (is_a)

• Composition (part_of)

• abstraction

Provides multi-level knowledge representation

Relaxation Mechanism

Relaxation Variables

• Types

• Attributes

• Attribute Values

Nearness Measure

Context Dependent

• Time

• Space

• Concept

Relaxation Specifics

Explicit (by user)

• relaxable range specified by C-SQL

• primitives (relaxable predicates)

Implicit (by system)

• generalization & specialization

• based on

– context

– type abstraction hierarchy

– abstract domain values

Interactive

• through user/ system interaction

C-SQL

An extended Query Language

Primitives (Predicates) for Cooperative Query
Answering

Context Free

• approximate

 ^9 AM

• inclusion

 between (7 AM, 11 AM)

• set membership

 within {‘LAX’, “Burbank”}

Context Sensitive (nearness)

• Restaurant near-to ‘Redondo Beach’

• Airport near-to ‘LAX’

• Chinese Restaurant nearest-to ‘UCLA’

Relaxation Order may be specified

• relaxation-order (food style, location)

Original Query

select * from delta-flight

where dep-airport = “Newark”

and arr-airport near-to “LAX”

Original Query

select * from restaurants

where type = “Chinese”

and location near-to “LAX”

Original Query

select * from american-flight

where dep-airport = “National”

and arr-airport near-to “LAX”

and dep-time between (1000 ^1100)

Similar-to

Find all airports in Tunisia similar to the Bizerte airport in terms of
runaway length and (more importantly) runway width.

select aport_name,

runway_length_ft,, runway_width_ft

from runways, countries

where aport_name similar-to ‘Bizerte’

based-on

((runway_length_ft 1.0)

 (runway_width_ft 2.0)) and
country_state_name_long = ‘Tunisia’ and
and countries.glc_cd = runways.glc_cd;

Similar-to Evaluation

CoBase first evaluates the query without the similar-to clause:

select aport_name,

runway_length_ft, runway_width_ft

from runways, countries

where country_state_name_long = ‘Tunisia’ and
and countries.glc_cd = runways.glc_cd;

Patterns

Specified by query conditions one or more attributes

• arrival time = 10AM

• departure airport = LAX

Advantages

• Finer granularity than types

• More specific knowledge representation

• More complex queries can be derived from logical
operation patterns

• Unified interface between KB and DB

Pattern: dep-airport = “Lax”

Pattern: los-angeles-dep-airport

Associated Subject: Weather

Information derived from association:

Adverse weather conditions over LA in winter might delay
flights.

Pattern: arr-airport = “O-Hare”

Pattern name: Chicago-arr-airport

Associated Subject: Weather

Information derived from association: Snowstorm over
Chicago in winter might divert flights to other airports.

Association Control

Search for Association Links

Termination

Rule Based Approach

Static Rules

Do not Consider

User Model

Application Context

No Termination

Case-Based Approach

• Use Past Cases to Infer Future Association

• Consider
• User Model

• Query and Application Context

• Termination
• Association Ranking

The Demo with CoBase,SIMS and LIM

Example Query:

Find all airports near-to Bizerte that can land the
aircraft KC-10.

CoBase - provides relaxation primitive: near-to

SIMS - provides access to multiple databases

LIM - provides access to a single database

TM

TM j

